

INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA Published Online: May 7, 2024 DOI: 10.24330/ieja.1480269

S-M-CYCLIC SUBMODULES AND SOME APPLICATIONS

Samruam Baupradist

Received: 9 January 2024; Accepted: 2 April 2024 Communicated by Abdullah Harmancı

ABSTRACT. In this paper, we introduce the notion of S-M-cyclic submodules, which is a generalization of the notion of M-cyclic submodules. Let M, N be right R-modules and S be a multiplicatively closed subset of a ring R. A submodule A of N is said to be an S-M-cyclic submodule, if there exist $s \in S$ and $f \in Hom_R(M, N)$ such that $As \subseteq f(M) \subseteq A$. Besides giving many properties of S-M-cyclic submodules, we generalize some results on M-cyclic submodules to S-M-cyclic submodules. Furthermore, we generalize some properties of principally injective modules and pseudo-principally injective modules to S-principally injective modules and S-pseudo-principally injective modules, respectively. We study the transfer of this notion to various contexts of these modules.

Mathematics Subject Classification (2020): 20K25, 20K27, 20K30, 20N99 Keywords: *M*-cyclic submodule, *S*-*M*-cyclic submodule, *M*-principally injective module, *S*-*M*-principally injective module, pseudo-*M*-principally injective module, *S*-pseudo-*M*-principally injective module

1. Introduction

Throughout this paper, R is an associative ring with identity and all modules are unitary right R-modules. Let M be a right R-module. The annihilator of M, denoted by $Ann_R(M)$, is $Ann_R(M) = \{r \in R \mid Mr = 0\}$. A nonempty subset Sof R is said to be multiplicatively closed set of R, if $0 \notin S, 1 \in S$ and $ss' \in S$ for all $s, s' \in S$. From now on S will always denote a multiplicatively closed set of R. In this paper, we concern with S-M-cyclic submodules which are generalizations of M-cyclic submodules. Let M be a right R-module. Recall from [15], a submodule N of M is called M-cyclic, if it is isomorphic to M/L for some submodule L of M. Hence any M-cyclic submodule X of M can be considered as the image of an endomorphism of M. Nguyen Van Sanh et al. in their paper [15] gave the concept of M-cyclic submodules. A right R-module N is called M-principally injective, if every R-homomorphism from an M-cyclic submodule of M to N can be extended to

SAMRUAM BAUPRADIST

M. Nguyen Van Sanh et al. give some characterizations and properties of quasiprincipally injective modules which generalize results of Nicholson and Yousif ([10]). The notion of M-principally injective module has attracted many researchers and it has been studied in many papers. See, for examples, [8], [11], [12] and [14]. Recall from [5] that a right R-module N is called *pseudo-M-principally injective*, if every monomorphism from an M-cyclic submodule X of M to N can be extended to an R-homomorphism from M to N. They study the structure of the endomorphism ring of a quasi-pseudo-principally injective module M which is a quasi-projective Kasch module (see [5, Theorem 2.5 and Theorem 2.6]). The readers can refer to [4], [6], [13] and [17] for more details on pseudo-M-principally injective modules.

In this paper, we introduce S-M-cyclic submodules, S-M-principally injective modules and S-pseudo-M-principally injective modules which are generalizations of M-cyclic submodules, M-principally injective modules and pseudo-M-principally injective modules, respectively. In Section 2, we give some examples of S-M-cyclic submodules, see Example 2.3. We give the necessary and sufficient conditions for the submodule of a right R-module to be an S-M-cyclic submodule, list in Theorem 2.15 and Theorem 2.16. At the end of Section 2, we give the necessary and sufficient conditions for a simple module to be an S-M-cyclic submodule, list in Proposition 2.16 and Proposition 2.17. In Section 3, we give an example of S-Mprincipally injective module, see Example 3.2. Several characterizations and some properties of S-M-principally injective modules are given in this section. As the main results, in Section 4, we give the necessary and sufficient conditions for the Spseudo-M-principally injective module to be an S-M-principally injective module, see Example 3.2. Several characterizations for the Spseudo-M-principally injective module to be an S-M-principally injective module, see Example 4.12.

2. S-M-cyclic submodules

We start with the following definitions.

Definition 2.1. Let S be a multiplicatively closed subset of R, M and N be right R-modules.

- (1) A submodule A of N is called an S-M-cyclic submodule of N, if there exist $s \in S$ and $f \in Hom_R(M, N)$ such that $As \subseteq f(M) \subseteq A$.
- (2) A right *R*-module *N* is called an *S*-*M*-cyclic module, if every submodule of *N* is an *S*-*M*-cyclic submodule of *N*.
- (3) A right (left) ideal I of R is called an S-R-cyclic right (left) ideal of R, if I_R (_RI) is an S-R-cyclic submodule of R_R (_RR) and a ring R is called right (left) S-R cyclic, if R_R (_RR) is an S-R-cyclic module.

- **Remark 2.2.** (1) Let M be a right R-module and S a multiplicatively closed subset of a ring R. If $ann_R(M) \cap S \neq \phi$, then M is trivially an S-M-cyclic module.
 - (2) To avoid this trivial case, from now on we assume that all multiplicatively closed subset of a ring R satisfies $ann_R(M) \cap S = \phi$.
 - (3) Let M be a right R-module. The M-cyclic submodule of M is a special case of S-M-cyclic submodule of M when $S = \{1\}$.
- **Example 2.3.** (1) From [3], for right *R*-modules *M* and *N*, *N* is called a *fully-M*-cyclic module, if every submodule *A* of *N*, there exists $f \in Hom_R(M, N)$ such that A = f(M). It is clear that every fully-*M*-cyclic module is an *S*-*M*-cyclic module.
 - (2) Let M be a right R-module. We can see that every simple module is an S-M-cyclic module for any multiplicatively closed subset S of R.
 - (3) Let \mathbb{Z}_p be the set of all integers modulo p where p is a prime number,

$$R = \left\{ \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \mid a, b \in \mathbb{Z}_p \right\}, M = \left\{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} \mid a, b \in \mathbb{Z}_p \right\}$$

and

$$N = \left\{ \begin{bmatrix} a & 0 \\ b & 0 \end{bmatrix} \mid a, b \in \mathbb{Z}_p \right\}.$$

Then

- (3.1) R is a ring.
- (3.2) M and N are right R-modules.
- (3.3) N is an S-M-cyclic module.

Proof. The proof of (3.1) and (3.2) are routine by using definitions of a ring and a right *R*-module.

(3.3) Note that all nonzero submodules of N are

$$\left\{ \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} \mid a \in \mathbb{Z}_p \right\}, E_k = \left\{ \begin{bmatrix} ak & 0 \\ a & 0 \end{bmatrix} \mid a \in \mathbb{Z}_p \right\} \text{ where } k \in \mathbb{Z}_p \text{ and } N.$$

Let A be a nonzero submodule of N. $(\begin{bmatrix} & & \\ &$

Case 1.
$$A = \left\{ \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} \mid a \in \mathbb{Z}_p \right\}$$
. Define $f : M \to N$ by
$$f\left(\begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} \right) = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} \quad \text{for all } \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} \in M$$

It is clear that $f \in Hom_R(M, N)$. Choose $s \in S$. We can show that $As \subseteq f(M) \subseteq A$. $\left(\begin{bmatrix} ak & 0 \end{bmatrix} \right)$

Case 2.
$$A = E_k = \left\{ \begin{bmatrix} ak & 0 \\ a & 0 \end{bmatrix} \mid a \in \mathbb{Z}_p \right\}$$
 for some $k \in \mathbb{Z}_p$.
Define $f_k : M \to N$ by
 $f_k \left(\begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} \right) = \begin{bmatrix} ak & 0 \\ a & 0 \end{bmatrix}$ for all $\begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} \in M$.

It is clear that $f_k \in Hom_R(M, N)$. We can choose $s \in S$ and show that $As \subseteq f_k(M) \subseteq A$.

Case 3. A = N. It is obvious.

From Case 1, Case 2 and Case 3, we have N is an S-M-cyclic module.

Proposition 2.4. Let M and N be right R-modules. Every M-cyclic submodule of N is an S-M-cyclic submodule of N for any multiplicatively closed subset S of R.

Proof. Let S be a multiplicatively closed subset of R and A be an M-cyclic submodule of N. There exists $f \in Hom_R(M, N)$ such that A = f(M). Choose $s \in S$. Let $as \in As$. Since $a \in A = f(M)$, there exists $m \in M$ such that a = f(m). Then $as = f(m)s = f(ms) \in f(M)$ and thus $As \subseteq f(M)$. So $As \subseteq f(M) \subseteq A$. Therefore A is an S-M-cyclic submodule of N.

Proposition 2.5. Let U(R) be the set of all units in a ring R and M, N be right R-modules. If $S \subseteq U(R)$, then every S-M-cyclic submodule of N is an M-cyclic submodule of N.

Proof. Suppose that $S \subseteq U(R)$. Let A be an S-M-cyclic submodule of N. There exist $s \in S$ and $f \in Hom_R(M, N)$ such that $As \subseteq f(M) \subseteq A$. Then

$$Ass^{-1} \subseteq f(M)s^{-1} \subseteq As^{-1},$$
$$A \subseteq f(M)s^{-1} \subseteq A.$$

So $A = f(M)s^{-1}$. Since $A = f(M)s^{-1} = f(Ms^{-1}) \subseteq f(M) \subseteq A$, f(M) = A. Therefore A is an M-cyclic submodule of N.

Proposition 2.6. Let M, N be right R-modules and A, B be submodules of N such that $A \subseteq B$. If A is an S-M-cyclic submodule of B, then A is an S-M-cyclic submodule of N.

4

Proof. Suppose that A is an S-M-cyclic submodule of B. There exist $s \in S$ and $f \in Hom_R(M, B)$ such that $As \subseteq f(M) \subseteq A$. But $B \subseteq N$, we have $f \in Hom_R(M, N)$ and thus A is an S-M-cyclic submodule of N. \Box

Proposition 2.7. Let M be a right R-module, A and B be submodules of M. If A is an S-M-cyclic submodule of M and B is an S-A-cyclic submodule of A, then B is an S-M-cyclic submodule of M.

Proof. Suppose that A is an S-M-cyclic submodule of M and B is an S-A-cyclic submodule of A. There exist $s_1, s_2 \in S$, $f_1 \in End_R(M)$ and $f_2 \in End_R(A)$ such that $As_1 \subseteq f_1(M) \subseteq A$ and $Bs_2 \subseteq f_2(A) \subseteq B$. Since S is a multiplicatively closed subset of R, $s_2s_1 \in S$ and thus $Bs_2s_1 \subseteq f_2(A)s_1 \subseteq f_2f_1(M) \subseteq f_2(A) \subseteq B$ where $f_2f_1 \in End_R(M)$. Therefore B is an S-M-cyclic submodule of M.

Proposition 2.8. Let M and N be right R-modules. Then N is an S-M-cyclic module if and only if every submodule of N is an S-M-cyclic module.

Proof. First, we suppose that N is an S-M-cyclic module. Let A be a submodule of N and B be a submodule of A. Then B is a submodule of N and by the assumption, there exist $s \in S$ and $f \in Hom_R(M, N)$ such that $Bs \subseteq f(M) \subseteq B$. Since $f(M) \subseteq B$ and $B \subseteq A$, $f \in Hom_R(M, A)$. Hence A is an S-M-cyclic module. The converse of this proposition is obvious.

We can change from submodules to be essential submodules which is shown in the following result.

Proposition 2.9. Let M and N be right R-modules. Then N is an S-M-cyclic module if and only if every essential submodule of N is an S-M-cyclic module.

Proof. (\Rightarrow) It follows by Proposition 2.8.

(\Leftarrow) Since N is an essential submodule of N and by assumption, N is an S-M-cyclic module.

Proposition 2.10. Let M, P and Q be right R-modules with $P \cong Q$. If P is an S-M-cyclic module, then Q is an S-M-cyclic module.

Proof. Suppose that P is an S-M-cyclic module. Let L be a submodule of Q. Since $P \cong Q$, there exists an isomorphism $f : Q \to P$. By assumption, there exist $s \in S$ and $h \in Hom_R(M, P)$ such that $f(L)s \subseteq h(M) \subseteq f(L)$. Then

$$f(Ls)\subseteq h(M)\subseteq f(L),\ f^{-1}f(Ls)\subseteq f^{-1}h(M)\subseteq f^{-1}f(L),\ Ls\subseteq f^{-1}h(M)\subseteq L.$$

But $f^{-1}h \in Hom_R(M, Q)$, we have Q is an S-M-cyclic module.

Proposition 2.11. Let M, M' and N be right R-modules which N is an S-Mcyclic module. If M is an R-epimorphic image of M', then N is an S-M'-cyclic module.

Proof. Suppose that M is an R-epimorphic image of M'. There exists an R-homomorphism $\alpha : M' \to M$ such that $\alpha(M') = M$. Let A be a submodule of N. Since N is an S-M-cyclic module, there exist $s \in S$ and $\beta : M \to N$ such that $As \subseteq \beta(M) \subseteq A$. Then $As \subseteq \beta\alpha(M') \subseteq A$. But $\beta\alpha \in Hom_R(M', N)$, we have N is an S-M'-cyclic module.

Proposition 2.12. Let M, N be right R-modules and A, B be submodules of N such that $B \subseteq A$. If A is an S-M-cyclic submodule of N, then A/B is an S-M-cyclic submodule of N/B.

Proof. Suppose that A is an S-M-cyclic submodule of N. There exist $s \in S$ and $f \in Hom_R(M, N)$ such that $As \subseteq f(M) \subseteq A$. Define $\overline{f} : M \to N/B$ by $\overline{f}(m) = f(m) + B$ for all $m \in M$. It is clear that \overline{f} is well defined and an R-homomorphism. Then $(A/B)s \subseteq \overline{f}(M) \subseteq A/B$. Therefore A/B is an S-M-cyclic submodule of N/B.

Lemma 2.13. Let M, N be right R-modules and S_1, S_2 be multiplicatively closed subsets of R such that $S_1 \subseteq S_2$. If N is an S_1 -M-cyclic submodule of N, then N is an S_2 -M-cyclic submodule of N.

Proof. This is clear.

Recall from [1], let S be a multiplicatively closed subset of R. The saturation S^* of S is defined as $S^* = \{x \in R \mid x | y \text{ for some } y \in S\}$. A multiplicatively closed subset S of R is called a *saturated multiplicatively closed set* if $S = S^*$.

Theorem 2.14. Let M and N be right R-modules and A be a submodule of N. Then A is an S-M-cyclic submodule of N if and only if A is an S^* -M-cyclic submodule of N.

Proof. (\Rightarrow) Since $S \subseteq S^*$ and by Lemma 2.13, we have A is an S^* -M-cyclic submodule of N.

(⇐) Suppose that A is an S^* -M-cyclic submodule of N. There exist $x \in S^*$ and $f \in Hom_R(M, N)$ such that $Ax \subseteq f(M) \subseteq A$. Choose $y \in R$ with $xy \in S$. Then $Axy \subseteq f(M)y = f(My) \subseteq f(M) \subseteq A$. Hence A is an S^* -M-cyclic submodule of N.

Theorem 2.15. Let R be a commutative ring, M, N right R-modules and A a submodule of N. Then A is an S-M-cyclic submodule of N if and only if As is an S-M-cyclic submodule of N for all $s \in S$.

Proof. (\Rightarrow) Let $s \in S$. Since A is an S-M-cyclic submodule of N, there exist $s_1 \in S$ and $f \in Hom_R(M, N)$ such that $As_1 \subseteq f(M) \subseteq A$ and thus $As_1s \subseteq f(M)s \subseteq As$. But R is a commutative ring, $Ass_1 \subseteq f(Ms) \subseteq As$. Define $h: M \to N$ by h(m) = f(ms) for all $m \in M$. It is clear that h is well-defined and an R-homomorphism from M to N. So $Ass_1 \subseteq h(M) \subseteq As$ and hence As is an S-M-cyclic submodule of N.

(⇐) Since $1 \in S$, A is an S-M-cyclic submodule of N. \Box

Theorem 2.16. Let M and N be right R-modules which N is an S-M-cyclic module and A is a submodule of N. Then

- (1) A is an essential submodule of N if and only if for each $t \in Hom_R(M, N)$ - $\{0\}, t(M) \cap A \neq \{0\}.$
- (2) A is a uniform module if and only if for each $t \in Hom_R(M, A)$ -{0}, t(M) is an essential submodule of A.

Proof.

(1) (\Rightarrow) It is obvious.

(\Leftarrow) Let *B* be a nonzero submodule of *N*. Since *N* is an *S*-*M*-cyclic module, there exist $s \in S$ and $f \in Hom_R(M, N)$ such that $Bs \subseteq f(M) \subseteq B$. By assumption, $f(M) \cap A \neq \{0\}$. But $\{0\} \neq f(M) \cap A \subseteq B \cap A$, $B \cap A \neq \{0\}$. Therefore *A* is an essential submodule of *N*.

(2) (\Rightarrow) It is obvious.

(⇐) Let B and C be nonzero submodules of A. Since N is an S-M-cyclic module, there exist $s_1, s_2 \in S$ and $f_1, f_2 \in Hom_R(M, N)$ such that $Bs_1 \subseteq f_1(M) \subseteq B$ and $Cs_1 \subseteq f_2(M) \subseteq C$. But B and C are submodules of A, we have $f_1, f_2 \in Hom_R(M, A)$. By assumption, $f_1(M)$ and $f_2(M)$ are essential submodules of A and thus $f_1(M) \cap f_2(M) \neq \{0\}$. Since $f_1(M) \subseteq B$ and $f_2(M) \subseteq C$, $\{0\} \neq f_1(M) \cap f_2(M) \subseteq B \cap C$ and thus $B \cap C \neq \{0\}$. Therefore A is a uniform module. \Box

Proposition 2.17. Let M and N be right R-modules with $Hom_R(M, N) \neq \{0\}$. Then N is a simple module if and only if N is an S-M-cyclic module with every nonzero R-homomorphism from M to N an epimorphism.

Proof. (\Rightarrow) It is obvious.

 (\Leftarrow) Let A be a nonzero submodule of N. Since N is an S-M-cyclic module, there

exist $s \in S$ and $f \in Hom_R(M, N)$ such that $As \subseteq f(M) \subseteq A$. By assumption, f(M) = N and thus A = N. Hence N is a simple module.

A right *R*-module *M* is said to satisfy (**)-property if every non-zero endomorphism of *M* is an epimorphism (see [16]).

Proposition 2.18. Let M be a right R-module. Then M is a simple module if and only if M is an S-cyclic module with (**)-property.

Proof. (\Rightarrow) It is clear.

(\Leftarrow) Suppose that M is an S-cyclic module with (**)-property. Let N be a non-zero submodule of M. By assumption, there exist $s \in S$ and $f \in End_R(M)$ such that $Ns \subseteq f(M) \subseteq N$. Since M satisfies (**)-property, f is an R-epimorphism and thus f(M) = M. So we have M = N. Hence M is a simple module. \Box

Corollary 2.19. If a right *R*-module *M* is an *S*-cyclic module with (**)-property, then $End_R(M)$ is a division ring.

3. S-M-principally injective modules

In this section, we introduce a general form of M-principally injectivity.

Definition 3.1. Let S be a multiplicatively closed subset of a ring R and M be a right R-module. A right R-module N is called an S-M-principally injective module (for short S-M-p-injective module) if every R-homomorphism from S-M-cyclic submodule of M to N can be extended to an R-homomorphism from M to N. M is called a quasi S-principally injective module (for short quasi S-p-injective module), if M is an S-M-principally injective module. In the case of a ring R, R is called a quasi S-principally injective module if R_R is a quasi S-principally injective module if R_R is a quasi S-principally-injective module. In the case $S = \{1\}$, N is called an M-principally-injective module that one refer to [15].

Example 3.2. Let \mathbb{Z}_p be the set of all integers modulo p where p is a prime number,

$$R = \left\{ \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \mid a, b \in \mathbb{Z}_p \right\}, N = \left\{ \begin{bmatrix} 0 & a \\ 0 & 0 \end{bmatrix} \mid a \in \mathbb{Z}_p \right\}, \text{ and}$$
$$M = \left\{ \begin{bmatrix} 0 & 0 \\ a & b \end{bmatrix} \mid a, b \in \mathbb{Z}_p \right\}.$$

It is clear that R is a ring under matrix addition and matrix multiplication and M, N are right R-modules. Let S be a multiplicatively closed subset of R. Then

(1) N is an S- R_R -principally injective module.

(2) M is an S-M-principally injective module.

Proof. It is easy to prove.

Proposition 3.3. Let M be a right R-module and N be an S-M-cyclic submodule of M. If N is an S-M-principally injective module, then N is a direct summand of M.

Proof. Suppose that N is an S-M-principally injective module. Consider the short exact sequence $0 \to N \xrightarrow{i_N} M \xrightarrow{\pi_N} M/N \to 0$ where i_N is the inclusion map from N to M and π_N is the canonical projection from M to M/N. Since N is an S-M-principally injective module, there exists an R-homomorphism α from M to N such that $\alpha \circ i_N = i_N$. So the short exact sequence splits. Hence N is a direct summand of M.

Proposition 3.4. Let M, N and K be right R-modules with $N \cong K$. If N is an S-M-principally injective module, then K is an S-M-principally injective module.

Proof. Suppose that N is an S-M-principally injective module. Let A be an S-M-cyclic submodule of M and α be an R-homomorphism from A to K. Since $N \cong K$, there exists an isomorphism f from K to N. But N is an S-M-principally injective module, there exists an R-homomorphism g from M to N such that $g \circ i_A = f \circ \alpha$ where i_A is the inclusion on A. So $f^{-1} \circ g \circ i_A = f^{-1} \circ f \circ \alpha = \alpha$. Therefore K is an S-M-principally injective module.

Proposition 3.5. Let M and N be right R-modules and A be a direct summand of N. If N is an S-M-principally injective module, then

- (1) A is an S-M-principally injective module.
- (2) N/A is an S-M-principally injective module.

Proof. Suppose that N is an S-M-principally injective module. Since A is a direct summand of N, there exists a submodule A' of N such that $N = A \oplus A'$.

(1) Let *B* be an *S*-*M*-cyclic submodule of *M* and α be an *R*-homomorphism from *B* to *A*. Since *N* is an *S*-*M*-principally injective module, there exists an *R*-homomorphism β from *M* to *N* such that $\beta \circ i_B = i_A \circ \alpha$ where i_A and i_B are inclusion maps on *A* and *B*, respectively. Let π_A be a canonical projection of $N = A \oplus A'$ to *A*. Then $\pi_A \circ \beta \circ i_B = \pi_A \circ i_A \circ \alpha = \alpha$. Therefore *A* is an *S*-*M*-principally injective module.

(2) By (1), A' is an S-M-principally injective module. Since $A' \cong N/A$ and by Proposition 3.4, N/A is an S-M-principally injective module.

Theorem 3.6. Let A and M be right R-modules. Then A is an S-M-principally injective module if and only if A is an S-X-principally injective module for every S-M-cyclic submodule X of M.

Proof. (\Rightarrow) Suppose that A is an S-M-principally injective module. Let X be an S-M-cyclic submodule of M, B an S-X-cyclic submodule of X and φ an Rhomomorphism from B to A. By Proposition 2.8, B is an S-M-cyclic submodule of M. But A is an S-M-principally injective module, there exists $\overline{\varphi}: M \to N$ such that $\overline{\varphi} \circ i_B = \varphi$ where i_B is an inclusion map on B. Hence A is an S-X-principally injective module.

 (\Leftarrow) Clear.

By A. Haghany and M. R. Vedadi [7], a right R-module M is called *co-Hopfian* (Hopfian) if every injective (surjective) endomorphism $f: M \to M$ is an automorphism. According to [9], a right *R*-module *M* is called *directly finite*, if it is not isomorphic to a proper direct summand of M.

Lemma 3.7. ([9, Proposition 1.25]) An R-module M is directly finite if and only if $f \circ g = I$ implies $g \circ f = I$ for any $f, g \in End_R(M)$.

Proposition 3.8. Let M be a quasi S-principally injective directly finite module. Then M is a co-Hopfian module.

Proof. Let $f: M \to M$ be an *R*-monomorphism. Since *M* is a quasi *S*-principally injective module and an S-M-cyclic submodule of M, there exists $q: M \to M$ such that $g \circ f = I_M$ where I_M is an identity map on M. By Lemma 3.7, $f \circ g = I_M$ and thus f is an epimorphism. Therefore M is co-Hopfian. \square

Corollary 3.9. Let M be a quasi S-principally injective and Hopfian module. Then M is a co-Hopfian module.

4. S-pseudo-M-principally injective modules

In this section, we introduce a general form of pseudo-M-principally injectivity.

Definition 4.1. Let S be a multiplicatively closed subset of a ring R and M be a right R-module. A right R-module N is called S-pseudo-M-principally injective (for short S-pseudo-M-p-injective) if every monomorphism from S-M-cyclic submodule of M to N can be extended to an R-homomorphism from M to N. The module Mis called quasi S-pseudo-principally injective (for short quasi S-pseudo-p-injective) if M is an S-pseudo-M-principally injective module. In the case of a ring R, R is called *quasi* S-pseudo-principally injective if R_R is a quasi S-pseudo-principally injective module.

In the case $S = \{1\}$, N is called a pseudo-M-principally injective module that one refer to [5].

Example 4.2. Let M be a right R-module. Then every S-M-principally injective module is an S-pseudo-M-principally injective module.

Proposition 4.3. Let M, A and B be right R-modules such that $A \cong B$.

- If A is an S-pseudo-M-principally injective module, then B is an S-pseudo-M-principally injective module.
- (2) If M is an S-pseudo-A-principally injective module, then M is an S-pseudo-B-principally injective module.

Proof. Straightforward.

Proposition 4.4. Let A and M be right R-modules. Then A is an S-pseudo-M-principally injective module if and only if A is an S-pseudo-X-principally injective module for every S-M-cyclic submodule X of M.

Proof. It is similar to the proof of Theorem 3.6. \Box

Corollary 4.5. Let M and N be right R-modules. If N is an S-pseudo-M-principally injective module and A is a direct summand of M, then N is an S-pseudo-A-principally injective module.

Proof. By Proposition 4.4.

Proposition 4.6. Let M be a right R-module. Every direct summand of an Spseudo-M-principally injective module is an S-pseudo-M-principally injective module.

Proof. Let *N* be an *S*-pseudo-*M*-principally injective module and *A* be a direct summand of *N*. Let *B* be an *S*-*M*-cyclic submodule of *M* and φ be a monomorphism from *B* to *A*. Since *N* is an *S*-pseudo-*M*-principally injective module, there exists an *R*-homomorphism α from *M* to *N* such that $\alpha \circ i_B = i_A \circ \varphi$ where i_A and i_B are inclusion maps on *A* and *B*, respectively. So $\pi_A \circ \alpha \circ i_B = \pi_A \circ i_A \circ \varphi = \varphi$ where π_A is a canonical projection of *N* to *A*. Therefore *A* is an *S*-pseudo-*M*-principally injective module.

Two right *R*-modules M_1 and M_2 are relatively (or mutually) *S*-pseudo principally injective, if M_1 is an *S*-pseudo- M_2 -principally injective module and M_2 is an *S*-pseudo- M_1 -principally injective module.

Proposition 4.7. Let M_1 and M_2 be right *R*-modules. If $M_1 \oplus M_2$ is a quasi *S*-pseudo-principally injective module, then M_1 and M_2 are relatively *S*-pseudo-principally injective modules.

Proof. Let A be an S- M_2 -cyclic submodule of M_2 and φ a monomorphism from A to M_1 . Define $\psi : A \to M_1 \oplus M_2$ by $\psi(a) = (\varphi(a), a)$ for all $a \in A$. It is clear that ψ is well-defined and an R-homomorphism. Since φ is a monomorphism, ψ is a monomorphism from A to $M_1 \oplus M_2$. But $M_1 \oplus M_2$ is a quasi S-pseudo-principally injective module, there exists an R-homomorphism α from $M_1 \oplus M_2$ to $M_1 \oplus M_2$ such that $\alpha \circ i_{M_2} \circ i_A = \psi$ where i_A is an inclusion map on A and i_{M_2} is an injection map on M_2 . So $\pi_{M_1} \circ \alpha \circ i_{M_2} \circ i_A = \pi_{M_1} \circ \psi = \varphi$ where π_{M_1} is a projection map from $M_1 \oplus M_2$ to M_1 . Hence M_1 is an S-pseudo- M_2 -principally injective module. Similarly, we can proved that M_2 is an S-pseudo- M_1 -principally injective module.

Proposition 4.8. Let M and N_i be right R-modules for all i = 1, 2, ..., n. If $\bigoplus_{i=1}^{n} N_i$ is an S-pseudo-M-principally injective module, then N_i is an S-pseudo-M-principally injective module for all i = 1, 2, ..., n.

Proof. Suppose that $\bigoplus_{i=1}^{n} N_i$ is an *S*-pseudo-*M*-principally injective module. Let $i \in \{1, 2, ..., n\}$, *A* be an *S*-*M*-cyclic submodule of *M* and φ be a monomorphism from *A* to N_i . Since $\bigoplus_{i=1}^{n} N_i$ is an *S*-pseudo-*M*-principally injective module and $i_{N_i} \circ \varphi$ is a monomorphism from *A* to $\bigoplus_{i=1}^{n} N_i$ where i_{N_i} is the $i^{\underline{th}}$ injective map from N_i to $\bigoplus_{i=1}^{n} N_i$, there exists an *R*-homomorphism α from *M* to $\bigoplus_{i=1}^{n} N_i$ such that $i_{N_i} \circ \varphi = \alpha \circ i_A$ where i_A is an inclusion map from *A* to *M*. So $\pi_{N_i} \circ \alpha \circ i_A = \pi_{N_i} \circ i_{N_i} \circ \varphi = \varphi$ where π_{N_i} is the $i^{\underline{th}}$ projection map from $\bigoplus_{i=1}^{n} N_i$ to N_i . Therefore N_i is an *S*-pseudo-principally injective module.

Lemma 4.9. Let M be a right R-module and A be an S-M-cyclic submodule of M. If A is an S-pseudo-M-principally injective module, then A is a direct summand of M.

Proof. Suppose that A is an S-pseudo-M-principally injective module. Let $i_A : A \to M$ be an inclusion map and $I_A : A \to A$ be the identity map. By assumption, there exists an R-homomorphism $\varphi : M \to A$ such that $\varphi \circ i_A = I_A$. Thus the short exact sequence $0 \to A \to M$ splits. So $Im(i_A) = A$ is a direct summand of M. \Box

A right *R*-module *M* is called *weakly co-Hopfian* ([7]), if any injective endomorphism *f* of *M* is essential i.e., $f(M) \ll_e M$.

Theorem 4.10. Let M be a quasi S-pseudo-principally injective module.

- (1) If M is a weakly co-Hopfian module, then M is a co-Hopfian module.
- (2) Let X be an S-M-cyclic submodule of M. If X is an essential submodule of M and M is a weakly co-Hopfian module, then X is a weakly co-Hopfian module.

Proof. (1) Suppose that M is a weakly co-Hopfian module. Let $f: M \to M$ be an R-monomorphism. So $f(M) \cong M$ and thus there exists an isomorphism φ from f(M) to M. Let A be an S-M-cyclic submodule of M and $\alpha: A \to f(M)$ be an R-monomorphism. Since M is an quasi S-pseudo-principally injective module and $\varphi \circ \alpha$ is an R-monomorphism, there exists an R-homomorphism $\psi: M \to M$ such that $\varphi \circ \alpha = \psi \circ i_A$ where i_A is an inclusion map from A to M. So $\varphi^{-1} \circ \psi \circ i_A =$ $\varphi^{-1} \circ \varphi \circ \alpha = \alpha$. We have that f(M) is an S-pseudo-M-principally injective module. By Lemma 4.9, f(M) is a direct summand of M. There exists a submodule B of Msuch that $M = f(M) \oplus B$ and thus $f(M) \cap B = 0$. But M is a weakly co-Hopfian module, B = 0. Then M = f(M) + B = f(M). So f is an epimorphism. Therefore M is a co-Hopfian module.

(2) Suppose that X is an essential submodule of M and M is a weakly co-Hopfian module. Let $f: X \to X$ be an R-monomorphism. Since M is an quasi S-pseudoprincipally injective module and $i_X \circ f$ is a monomorphism where $i_X: X \to M$ is an inclusion map, there exists an R-homomorphism $\varphi: M \to M$ such that $i_X \circ f \circ i_X = \varphi$. So $Ker(\varphi) \cap X = 0$. But $X \ll_e M$, $Ker(\varphi) = 0$. By [7, Corollary 1.2], $\varphi(X) \ll_e M$. Since $f(X) = \varphi(X)$, we have $f(X) \ll_e M$. But $f(X) \subseteq X \subseteq M$, so $f(X) \ll_e X$. Therefore X is a weakly co-Hopfian module.

Recall that a right *R*-module *M* is said to be *multiplication* if each submodule N of *M* has the form N = MI for some ideal *I* of *R* ([2]).

Proposition 4.11. Let M be a multiplication quasi S-pseudo-principally injective module. Then every S-M-cyclic submodule of M is quasi S-pseudo-principally injective.

Proof. Let N be an S-M-cyclic submodule of M, L be an S-N-cyclic submodule of N and φ be a monomorphism from L to N. So L is an S-M-cyclic submodule of M. But M is a quasi S-pseudo-principally injective module, there exists an R-homomorphism α from M to M such that $\alpha \circ i_L = \varphi$ where i_L is an inclusion map on *L*. Since *M* is a multiplication module, there exists an ideal *I* of *R* with N = MI. Then $\alpha(N) = \alpha(MI) = \alpha(M)I \subseteq MI = N$ and thus $\alpha|_N: N \to N$. So $\alpha|_N \circ i_L = \varphi$. Therefore *N* is a quasi *S*-pseudo-principally injective module. \Box

Theorem 4.12. Let M be a uniform module. Then every quasi S-pseudo-principally injective module is a quasi S-principally injective module.

Proof. Suppose that M is a quasi S-pseudo-principally injective module. Let A be an S-M-cyclic submodule of M and φ an R-homomorphism from A to M.

Case 1. $\ker(\varphi) = 0$. We see that φ is a monomorphism. But M is a quasi S-pseudo-principally injective module, there exists $\overline{\varphi} : M \to M$ such that $\overline{\varphi}|_A = \varphi$.

Case 2. $\ker(\varphi) \neq 0$. Since M is a uniform module, $\ker(\varphi)$ is an essential submodule of M. But $\ker(\varphi) \cap \ker(\varphi + i_A) = 0$ where i_A is the inclusion map from A to M, we have $\ker(\varphi + i_A) = 0$ and thus $\varphi + i_A$ is a monomorphism. Since Mis a quasi S-pseudo-principally injective module, there exists an R-homomorphism $\alpha : M \to M$ such that $\alpha(a) = (\varphi + i_A)(a)$ for all $a \in A$. Choose $\overline{\varphi} = \alpha - i_M$ where I_M is an identity map on M. Then $\overline{\varphi}(a) = (\alpha - i_M)(a) = \alpha(a) - i_M(a) =$ $\varphi(a) + i_A(a) - I_M(a) = \varphi(a)$ for all $a \in A$. We have $\overline{\varphi}_A = \varphi$.

From Case 1 and Case 2, we have that M is a quasi S-principally injective module.

Proposition 4.13. Let M be a right R-module and A be a submodule of M. If M is a quasi S-pseudo-principally injective module, A is an essential and S-M-cyclic submodule of M, then every monomorphism $\varphi : A \to M$ can be extended to monomorphism in $End_R(M)$.

Proof. Since M is a quasi S-pseudo-principally injective module, there exists $\overline{\varphi}$: $M \to M$ such that $\overline{\varphi}|_A = \varphi$. Since $A \cap \ker(\overline{\varphi}) = 0$ and A is an essential submodule of M, $\ker(\overline{\varphi}) = 0$. Thus $\overline{\varphi}$ is a monomorphism in $End_R(M)$.

Acknowledgement. The author is very grateful to the referees for many valuable comments and suggestions which helped to improve the paper.

Disclosure statement: The author report that there are no competing interests to declare.

References

- D. D. Anderson, T. Arabaci, U. Tekir and S. Koc, On S-multiplication modules, Comm. Algebra, 48(8) (2020), 3398-3407.
- [2] A. Barnard, *Multiplication modules*, J. Algebra, 71(1) (1981), 174-178.

- [3] S. Baupradist and S. Asawasamrit, On fully-M-cyclic modules, J. Math. Res., 3(2) (2011), 23-26.
- [4] S. Baupradist and S. Asawasamrit, GW-principally injective modules and pseudo-GW-principally injective modules, Southeast Asian Bull. Math., 42 (2018), 521-529.
- [5] S. Baupradist, H. D. Hai and N. V. Sanh, On pseudo-p-injectivity, Southeast Asian Bull. Math., 35(1) (2011), 21-27.
- [6] S. Baupradist, H. D. Hai and N. V. Sanh, A general form of pseudo-pinjectivity, Southeast Asian Bull. Math., 35 (2011), 927-933.
- [7] A. Haghany and M. R. Vedadi, Modules whose injective endomorphisms are essential, J. Algebra, 243(2) (2001), 765-779.
- [8] V. Kumar, A. J. Gupta, B. M. Pandeya and M. K. Patel, *M-sp-injective mod*ules, Asian-Eur. J. Math., 5(1) (2012), 1250005 (11 pp).
- [9] S. H. Mohamed and B. J. Muller, Continuous and Discrete Modules, London Math. Soc. Lecture Note Series, 147, Cambridge Univ. Press, Cambridge, 1990.
- [10] W. K. Nicholson and M. F. Yousif, *Principally injective rings*, J. Algebra, 174 (1995), 77-93.
- [11] M. K. Patel and S. Chase, *FI-semi-injective modules*, Palest. J. Math., 11(1) (2022), 182-190.
- [12] M. K. Patel, B. M. Pandeya, A. J. Gupta and V. Kumar, *Quasi principally injective modules*, Int. J. Algebra, 4 (2010), 1255-1259.
- T. C. Quynh and N. V. Sanh, On quasi pseudo-GP-injective rings and modules, Bull. Malays. Math. Sci. Soc., 37(2) (2014), 321-332.
- [14] N. V. Sanh and K. P. Shum, Endomorphism rings of quasi principally injective modules, Comm. Algebra, 29(4) (2001), 1437-1443.
- [15] N. V. Sanh, K. P. Shum, S. Dhompongsa and S. Wongwai, On quasi-principally injective modules, Algebra Colloq., 6(3) (1999), 269-276.
- [16] W. M. Xue, On Morita duality, Bull. Austral. Math. Soc., 49(1) (1994), 35-45.
- [17] Z. Zhu, Pseudo QP-injective modules and generalized pseudo QP-injective modules, Int. Electron. J. Algebra, 14 (2013), 32-43.

Samruam Baupradist

Department of Mathematics and Computer Science Faculty of Science Chulalongkorn University Bangkok 10330, Thailand e-mail: samruam.b@chula.ac.th