S-M-CYCLIC SUBMODULES AND SOME APPLICATIONS

Samruam Baupradist
Received: 9 January 2024; Accepted: 2 April 2024
Communicated by Abdullah Harmancı

Abstract

In this paper, we introduce the notion of S - M-cyclic submodules, which is a generalization of the notion of M-cyclic submodules. Let M, N be right R-modules and S be a multiplicatively closed subset of a ring R. A submodule A of N is said to be an $S-M$-cyclic submodule, if there exist $s \in S$ and $f \in \operatorname{Hom}_{R}(M, N)$ such that $A s \subseteq f(M) \subseteq A$. Besides giving many properties of S - M-cyclic submodules, we generalize some results on M-cyclic submodules to S - M-cyclic submodules. Furthermore, we generalize some properties of principally injective modules and pseudo-principally injective modules to S-principally injective modules and S-pseudo-principally injective modules, respectively. We study the transfer of this notion to various contexts of these modules.

Mathematics Subject Classification (2020): 20K25, 20K27, 20K30, 20N99
Keywords: M-cyclic submodule, S - M-cyclic submodule, M-principally injective module, S - M-principally injective module, pseudo- M-principally injective module, S-pseudo- M-principally injective module

1. Introduction

Throughout this paper, R is an associative ring with identity and all modules are unitary right R-modules. Let M be a right R-module. The annihilator of M, denoted by $A n n_{R}(M)$, is $A n n_{R}(M)=\{r \in R \mid M r=0\}$. A nonempty subset S of R is said to be multiplicatively closed set of R, if $0 \notin S, 1 \in S$ and $s s^{\prime} \in S$ for all $s, s^{\prime} \in S$. From now on S will always denote a multiplicatively closed set of R. In this paper, we concern with S - M-cyclic submodules which are generalizations of M-cyclic submodules. Let M be a right R-module. Recall from [15], a submodule N of M is called M-cyclic, if it is isomorphic to M / L for some submodule L of M. Hence any M-cyclic submodule X of M can be considered as the image of an endomorphism of M. Nguyen Van Sanh et al. in their paper [15] gave the concept of M-cyclic submodules and used them to characterize certain classes of M-principally injective modules. A right R-module N is called M-principally injective, if every R-homomorphism from an M-cyclic submodule of M to N can be extended to
M. Nguyen Van Sanh et al. give some characterizations and properties of quasiprincipally injective modules which generalize results of Nicholson and Yousif ([10]). The notion of M-principally injective module has attracted many researchers and it has been studied in many papers. See, for examples, [8], [11], [12] and [14]. Recall from [5] that a right R-module N is called pseudo- M-principally injective, if every monomorphism from an M-cyclic submodule X of M to N can be extended to an R-homomorphism from M to N. They study the structure of the endomorphism ring of a quasi-pseudo-principally injective module M which is a quasi-projective Kasch module (see [5, Theorem 2.5 and Theorem 2.6]). The readers can refer to [4], [6], [13] and [17] for more details on pseudo- M-principally injective modules.

In this paper, we introduce S - M-cyclic submodules, S - M-principally injective modules and S-pseudo- M-principally injective modules which are generalizations of M-cyclic submodules, M-principally injective modules and pseudo- M-principally injective modules, respectively. In Section 2, we give some examples of S - M-cyclic submodules, see Example 2.3. We give the necessary and sufficient conditions for the submodule of a right R-module to be an S - M-cyclic submodule, list in Theorem 2.15 and Theorem 2.16. At the end of Section 2, we give the necessary and sufficient conditions for a simple module to be an S - M-cyclic submodule, list in Proposition 2.16 and Proposition 2.17. In Section 3, we give an example of $S-M$ principally injective module, see Example 3.2. Several characterizations and some properties of S - M-principally injective modules are given in this section. As the main results, in Section 4, we give the necessary and sufficient conditions for the S -pseudo- M-principally injective module to be an S - M-principally injective module, see Theorem 4.12.

2. S - M-cyclic submodules

We start with the following definitions.
Definition 2.1. Let S be a multiplicatively closed subset of R, M and N be right R-modules.
(1) A submodule A of N is called an S - M-cyclic submodule of N, if there exist $s \in S$ and $f \in \operatorname{Hom}_{R}(M, N)$ such that $A s \subseteq f(M) \subseteq A$.
(2) A right R-module N is called an S - M-cyclic module, if every submodule of N is an S - M-cyclic submodule of N.
(3) A right (left) ideal I of R is called an S - R-cyclic right (left) ideal of R, if $I_{R}\left({ }_{R} I\right)$ is an S - R-cyclic submodule of $R_{R}\left({ }_{R} R\right)$ and a ring R is called right (left) S - R cyclic, if $R_{R}\left({ }_{R} R\right)$ is an S - R-cyclic module.

Remark 2.2. (1) Let M be a right R-module and S a multiplicatively closed subset of a ring R. If $a n n_{R}(M) \cap S \neq \phi$, then M is trivially an S - M-cyclic module.
(2) To avoid this trivial case, from now on we assume that all multiplicatively closed subset of a ring R satisfies $\operatorname{ann}_{R}(M) \cap S=\phi$.
(3) Let M be a right R-module. The M-cyclic submodule of M is a special case of S - M-cyclic submodule of M when $S=\{1\}$.

Example 2.3. (1) From [3], for right R-modules M and N, N is called a fully-M-cyclic module, if every submodule A of N, there exists $f \in \operatorname{Hom}_{R}(M, N)$ such that $A=f(M)$. It is clear that every fully- M-cyclic module is an S -M-cyclic module.
(2) Let M be a right R-module. We can see that every simple module is an S - M-cyclic module for any multiplicatively closed subset S of R.
(3) Let \mathbb{Z}_{p} be the set of all integers modulo p where p is a prime number,

$$
R=\left\{\left.\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right] \right\rvert\, a, b \in \mathbb{Z}_{p}\right\}, M=\left\{\left.\left[\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right] \right\rvert\, a, b \in \mathbb{Z}_{p}\right\}
$$

and

$$
N=\left\{\left.\left[\begin{array}{ll}
a & 0 \\
b & 0
\end{array}\right] \right\rvert\, a, b \in \mathbb{Z}_{p}\right\}
$$

Then
(3.1) R is a ring.
(3.2) M and N are right R-modules.
(3.3) N is an S - M-cyclic module.

Proof. The proof of (3.1) and (3.2) are routine by using definitions of a ring and a right R-module.
(3.3) Note that all nonzero submodules of N are

$$
\left\{\left.\left[\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right] \right\rvert\, a \in \mathbb{Z}_{p}\right\}, E_{k}=\left\{\left.\left[\begin{array}{cc}
a k & 0 \\
a & 0
\end{array}\right] \right\rvert\, a \in \mathbb{Z}_{p}\right\} \text { where } k \in \mathbb{Z}_{p} \text { and } N
$$

Let A be a nonzero submodule of N.
Case 1. $A=\left\{\left.\left[\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right] \right\rvert\, a \in \mathbb{Z}_{p}\right\}$. Define $f: M \rightarrow N$ by

$$
f\left(\left[\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right]\right)=\left[\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right] \quad \text { for all }\left[\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right] \in M
$$

It is clear that $f \in \operatorname{Hom}_{R}(M, N)$. Choose $s \in S$. We can show that $A s \subseteq f(M) \subseteq A$.
Case 2. $A=E_{k}=\left\{\left.\left[\begin{array}{cc}a k & 0 \\ a & 0\end{array}\right] \right\rvert\, a \in \mathbb{Z}_{p}\right\}$ for some $k \in \mathbb{Z}_{p}$.
Define $f_{k}: M \rightarrow N$ by

$$
f_{k}\left(\left[\begin{array}{cc}
a & b \\
0 & 0
\end{array}\right]\right)=\left[\begin{array}{cc}
a k & 0 \\
a & 0
\end{array}\right] \quad \text { for all }\left[\begin{array}{cc}
a & b \\
0 & 0
\end{array}\right] \in M
$$

It is clear that $f_{k} \in \operatorname{Hom}_{R}(M, N)$. We can choose $s \in S$ and show that $A s \subseteq f_{k}(M) \subseteq A$.
Case 3. $A=N$. It is obvious.
From Case 1, Case 2 and Case 3, we have N is an S - M-cyclic module.

Proposition 2.4. Let M and N be right R-modules. Every M-cyclic submodule of N is an S-M-cyclic submodule of N for any multiplicatively closed subset S of R.

Proof. Let S be a multiplicatively closed subset of R and A be an M-cyclic submodule of N. There exists $f \in \operatorname{Hom}_{R}(M, N)$ such that $A=f(M)$. Choose $s \in S$. Let as \in As. Since $a \in A=f(M)$, there exists $m \in M$ such that $a=f(m)$. Then $a s=f(m) s=f(m s) \in f(M)$ and thus $A s \subseteq f(M)$. So $A s \subseteq f(M) \subseteq A$. Therefore A is an S - M-cyclic submodule of N.

Proposition 2.5. Let $U(R)$ be the set of all units in a ring R and M, N be right R-modules. If $S \subseteq U(R)$, then every S-M-cyclic submodule of N is an M-cyclic submodule of N.

Proof. Suppose that $S \subseteq U(R)$. Let A be an S - M-cyclic submodule of N. There exist $s \in S$ and $f \in \operatorname{Hom}_{R}(M, N)$ such that $A s \subseteq f(M) \subseteq A$. Then

$$
\begin{aligned}
& A s s^{-1} \subseteq f(M) s^{-1} \subseteq A s^{-1} \\
& A \subseteq f(M) s^{-1} \subseteq A
\end{aligned}
$$

So $A=f(M) s^{-1}$. Since $A=f(M) s^{-1}=f\left(M s^{-1}\right) \subseteq f(M) \subseteq A, f(M)=A$. Therefore A is an M-cyclic submodule of N.

Proposition 2.6. Let M, N be right R-modules and A, B be submodules of N such that $A \subseteq B$. If A is an S-M-cyclic submodule of B, then A is an $S-M$-cyclic submodule of N.

Proof. Suppose that A is an S - M-cyclic submodule of B. There exist $s \in S$ and $f \in \operatorname{Hom}_{R}(M, B)$ such that $A s \subseteq f(M) \subseteq A$. But $B \subseteq N$, we have $f \in$ $\operatorname{Hom}_{R}(M, N)$ and thus A is an S - M-cyclic submodule of N.

Proposition 2.7. Let M be a right R-module, A and B be submodules of M. If A is an S - M-cyclic submodule of M and B is an S - A-cyclic submodule of A, then B is an $S-M$-cyclic submodule of M.

Proof. Suppose that A is an S - M-cyclic submodule of M and B is an S - A-cyclic submodule of A. There exist $s_{1}, s_{2} \in S, f_{1} \in \operatorname{End}_{R}(M)$ and $f_{2} \in \operatorname{End}_{R}(A)$ such that $A s_{1} \subseteq f_{1}(M) \subseteq A$ and $B s_{2} \subseteq f_{2}(A) \subseteq B$. Since S is a multiplicatively closed subset of $R, s_{2} s_{1} \in S$ and thus $B s_{2} s_{1} \subseteq f_{2}(A) s_{1} \subseteq f_{2} f_{1}(M) \subseteq f_{2}(A) \subseteq B$ where $f_{2} f_{1} \in \operatorname{End}_{R}(M)$. Therefore B is an S - M-cyclic submodule of M.

Proposition 2.8. Let M and N be right R-modules. Then N is an $S-M$-cyclic module if and only if every submodule of N is an S-M-cyclic module.

Proof. First, we suppose that N is an S - M-cyclic module. Let A be a submodule of N and B be a submodule of A. Then B is a submodule of N and by the assumption, there exist $s \in S$ and $f \in \operatorname{Hom}_{R}(M, N)$ such that $B s \subseteq f(M) \subseteq B$. Since $f(M) \subseteq B$ and $B \subseteq A, f \in \operatorname{Hom}_{R}(M, A)$. Hence A is an S - M-cyclic module. The converse of this proposition is obvious.

We can change from submodules to be essential submodules which is shown in the following result.

Proposition 2.9. Let M and N be right R-modules. Then N is an $S-M$-cyclic module if and only if every essential submodule of N is an S - M-cyclic module.

Proof. (\Rightarrow) It follows by Proposition 2.8.
(\Leftarrow) Since N is an essential submodule of N and by assumption, N is an S - M-cyclic module.

Proposition 2.10. Let M, P and Q be right R-modules with $P \cong Q$. If P is an S-M-cyclic module, then Q is an S-M-cyclic module.

Proof. Suppose that P is an S - M-cyclic module. Let L be a submodule of Q. Since $P \cong Q$, there exists an isomorphism $f: Q \rightarrow P$. By assumption, there exist $s \in S$ and $h \in \operatorname{Hom}_{R}(M, P)$ such that $f(L) s \subseteq h(M) \subseteq f(L)$. Then

$$
f(L s) \subseteq h(M) \subseteq f(L), f^{-1} f(L s) \subseteq f^{-1} h(M) \subseteq f^{-1} f(L), L s \subseteq f^{-1} h(M) \subseteq L
$$

But $f^{-1} h \in \operatorname{Hom}_{R}(M, Q)$, we have Q is an S - M-cyclic module.

Proposition 2.11. Let M, M^{\prime} and N be right R-modules which N is an $S-M$ cyclic module. If M is an R-epimorphic image of M^{\prime}, then N is an $S-M^{\prime}$-cyclic module.

Proof. Suppose that M is an R-epimorphic image of M^{\prime}. There exists an R homomorphism $\alpha: M^{\prime} \rightarrow M$ such that $\alpha\left(M^{\prime}\right)=M$. Let A be a submodule of N. Since N is an S - M-cyclic module, there exist $s \in S$ and $\beta: M \rightarrow N$ such that $A s \subseteq \beta(M) \subseteq A$. Then $A s \subseteq \beta \alpha\left(M^{\prime}\right) \subseteq A$. But $\beta \alpha \in \operatorname{Hom}_{R}\left(M^{\prime}, N\right)$, we have N is an S - M^{\prime}-cyclic module.

Proposition 2.12. Let M, N be right R-modules and A, B be submodules of N such that $B \subseteq A$. If A is an S-M-cyclic submodule of N, then A / B is an $S-M$-cyclic submodule of N / B.

Proof. Suppose that A is an S - M-cyclic submodule of N. There exist $s \in S$ and $f \in \operatorname{Hom}_{R}(M, N)$ such that $A s \subseteq f(M) \subseteq A$. Define $\bar{f}: M \rightarrow N / B$ by $\bar{f}(m)=f(m)+B$ for all $m \in M$. It is clear that \bar{f} is well defined and an R homomorphism. Then $(A / B) s \subseteq \bar{f}(M) \subseteq A / B$. Therefore A / B is an S - M-cyclic submodule of N / B.

Lemma 2.13. Let M, N be right R-modules and S_{1}, S_{2} be multiplicatively closed subsets of R such that $S_{1} \subseteq S_{2}$. If N is an $S_{1}-M$-cyclic submodule of N, then N is an $S_{2}-M$-cyclic submodule of N.

Proof. This is clear.
Recall from [1], let S be a multiplicatively closed subset of R. The saturation S^{*} of S is defined as $S^{*}=\{x \in R|x| y$ for some $y \in S\}$. A multiplicatively closed subset S of R is called a saturated multiplicatively closed set if $S=S^{*}$.

Theorem 2.14. Let M and N be right R-modules and A be a submodule of N. Then A is an S-M-cyclic submodule of N if and only if A is an $S^{*}-M$-cyclic submodule of N.

Proof. (\Rightarrow) Since $S \subseteq S^{*}$ and by Lemma 2.13, we have A is an S^{*} - M-cyclic submodule of N.
(\Leftarrow) Suppose that A is an $S^{*}-M$-cyclic submodule of N. There exist $x \in S^{*}$ and $f \in \operatorname{Hom}_{R}(M, N)$ such that $A x \subseteq f(M) \subseteq A$. Choose $y \in R$ with $x y \in S$. Then $A x y \subseteq f(M) y=f(M y) \subseteq f(M) \subseteq A$. Hence A is an S^{*} - M-cyclic submodule of N.

Theorem 2.15. Let R be a commutative ring, M, N right R-modules and A a submodule of N. Then A is an S - M-cyclic submodule of N if and only if A s is an S-M-cyclic submodule of N for all $s \in S$.

Proof. (\Rightarrow) Let $s \in S$. Since A is an S - M-cyclic submodule of N, there exist $s_{1} \in S$ and $f \in \operatorname{Hom}_{R}(M, N)$ such that $A s_{1} \subseteq f(M) \subseteq A$ and thus $A s_{1} s \subseteq f(M) s \subseteq A s$. But R is a commutative ring, $A s s_{1} \subseteq f(M s) \subseteq A s$. Define $h: M \rightarrow N$ by $h(m)=$ $f(m s)$ for all $m \in M$. It is clear that h is well-defined and an R-homomorphism from M to N. So $A s s_{1} \subseteq h(M) \subseteq A s$ and hence $A s$ is an S - M-cyclic submodule of N.
(\Leftarrow) Since $1 \in S, A$ is an S - M-cyclic submodule of N.
Theorem 2.16. Let M and N be right R-modules which N is an S - M-cyclic module and A is a submodule of N. Then
(1) A is an essential submodule of N if and only if for each $t \in \operatorname{Hom}_{R}(M, N)$ $\{0\}, t(M) \cap A \neq\{0\}$.
(2) A is a uniform module if and only if for each $t \in \operatorname{Hom}_{R}(M, A)-\{0\}, t(M)$ is an essential submodule of A.

Proof.

$(1)(\Rightarrow)$ It is obvious.
(\Leftarrow) Let B be a nonzero submodule of N. Since N is an S - M-cyclic module, there exist $s \in S$ and $f \in \operatorname{Hom}_{R}(M, N)$ such that $B s \subseteq f(M) \subseteq B$. By assumption, $f(M) \cap A \neq\{0\}$. But $\{0\} \neq f(M) \cap A \subseteq B \cap A, B \cap A \neq\{0\}$. Therefore A is an essential submodule of N.
$(2)(\Rightarrow)$ It is obvious.
(\Leftarrow) Let B and C be nonzero submodules of A. Since N is an S - M-cyclic module, there exist $s_{1}, s_{2} \in S$ and $f_{1}, f_{2} \in \operatorname{Hom}_{R}(M, N)$ such that $B s_{1} \subseteq f_{1}(M) \subseteq B$ and $C s_{1} \subseteq f_{2}(M) \subseteq C$. But B and C are submodules of A, we have $f_{1}, f_{2} \in$ $\operatorname{Hom}_{R}(M, A)$. By assumption, $f_{1}(M)$ and $f_{2}(M)$ are essential submodules of A and thus $f_{1}(M) \cap f_{2}(M) \neq\{0\}$. Since $f_{1}(M) \subseteq B$ and $f_{2}(M) \subseteq C,\{0\} \neq$ $f_{1}(M) \cap f_{2}(M) \subseteq B \cap C$ and thus $B \cap C \neq\{0\}$. Therefore A is a uniform module.

Proposition 2.17. Let M and N be right R-modules with $\operatorname{Hom}_{R}(M, N) \neq\{0\}$. Then N is a simple module if and only if N is an S-M-cyclic module with every nonzero R-homomorphism from M to N an epimorphism.

Proof. (\Rightarrow) It is obvious.
(\Leftarrow) Let A be a nonzero submodule of N. Since N is an S - M-cyclic module, there
exist $s \in S$ and $f \in \operatorname{Hom}_{R}(M, N)$ such that $A s \subseteq f(M) \subseteq A$. By assumption, $f(M)=N$ and thus $A=N$. Hence N is a simple module.

A right R-module M is said to satisfy $(* *)$-property if every non-zero endomorphism of M is an epimorphism (see [16]).

Proposition 2.18. Let M be a right R-module. Then M is a simple module if and only if M is an S-cyclic module with (**)-property.

Proof. (\Rightarrow) It is clear.
(\Leftarrow) Suppose that M is an S-cyclic module with $(* *)$-property. Let N be a non-zero submodule of M. By assumption, there exist $s \in S$ and $f \in \operatorname{End}_{R}(M)$ such that $N s \subseteq f(M) \subseteq N$. Since M satisfies $(* *)$-property, f is an R-epimorphism and thus $f(M)=M$. So we have $M=N$. Hence M is a simple module.

Corollary 2.19. If a right R-module M is an S-cyclic module with (**)-property, then $\operatorname{End}_{R}(M)$ is a division ring.

3. S - M-principally injective modules

In this section, we introduce a general form of M-principally injectivity.
Definition 3.1. Let S be a multiplicatively closed subset of a ring R and M be a right R-module. A right R-module N is called an S-M-principally injective module (for short S - M-p-injective module) if every R-homomorphism from S - M cyclic submodule of M to N can be extended to an R-homomorphism from M to $N . M$ is called a quasi S-principally injective module (for short quasi S-p-injective module), if M is an S - M-principally injective module. In the case of a ring R, R is called a quasi S-principally injective module if R_{R} is a quasi S-principally-injective module. In the case $S=\{1\}, N$ is called an M-principally-injective module that one refer to [15].

Example 3.2. Let \mathbb{Z}_{p} be the set of all integers modulo p where p is a prime number,

$$
\begin{gathered}
R=\left\{\left.\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right] \right\rvert\, a, b \in \mathbb{Z}_{p}\right\}, N=\left\{\left.\left[\begin{array}{ll}
0 & a \\
0 & 0
\end{array}\right] \right\rvert\, a \in \mathbb{Z}_{p}\right\}, \text { and } \\
M=\left\{\left.\left[\begin{array}{ll}
0 & 0 \\
a & b
\end{array}\right] \right\rvert\, a, b \in \mathbb{Z}_{p}\right\} .
\end{gathered}
$$

It is clear that R is a ring under matrix addition and matrix multiplication and M, N are right R-modules. Let S be a multiplicatively closed subset of R. Then
(1) N is an S - R_{R}-principally injective module.
(2) M is an S - M-principally injective module.

Proof. It is easy to prove.
Proposition 3.3. Let M be a right R-module and N be an $S-M$-cyclic submodule of M. If N is an S - M-principally injective module, then N is a direct summand of M.

Proof. Suppose that N is an S - M-principally injective module. Consider the short exact sequence $0 \rightarrow N \xrightarrow{i_{N}} M \xrightarrow{\pi_{N}} M / N \rightarrow 0$ where i_{N} is the inclusion map from N to M and π_{N} is the canonical projection from M to M / N. Since N is an S -M-principally injective module, there exists an R-homomorphism α from M to N such that $\alpha \circ i_{N}=i_{N}$. So the short exact sequence splits. Hence N is a direct summand of M.

Proposition 3.4. Let M, N and K be right R-modules with $N \cong K$. If N is an S-M-principally injective module, then K is an S-M-principally injective module.

Proof. Suppose that N is an S - M-principally injective module. Let A be an $S-M$ cyclic submodule of M and α be an R-homomorphism from A to K. Since $N \cong K$, there exists an isomorphism f from K to N. But N is an S - M-principally injective module, there exists an R-homomorphism g from M to N such that $g \circ i_{A}=f \circ \alpha$ where i_{A} is the inclusion on A. So $f^{-1} \circ g \circ i_{A}=f^{-1} \circ f \circ \alpha=\alpha$. Therefore K is an S - M-principally injective module.

Proposition 3.5. Let M and N be right R-modules and A be a direct summand of N. If N is an $S-M$-principally injective module, then
(1) A is an S-M-principally injective module.
(2) N / A is an S-M-principally injective module.

Proof. Suppose that N is an S - M-principally injective module. Since A is a direct summand of N, there exists a submodule A^{\prime} of N such that $N=A \oplus A^{\prime}$.
(1) Let B be an S - M-cyclic submodule of M and α be an R-homomorphism from B to A. Since N is an S - M-principally injective module, there exists an R-homomorphism β from M to N such that $\beta \circ i_{B}=i_{A} \circ \alpha$ where i_{A} and i_{B} are inclusion maps on A and B, respectively. Let π_{A} be a canonical projection of $N=A \oplus A^{\prime}$ to A. Then $\pi_{A} \circ \beta \circ i_{B}=\pi_{A} \circ i_{A} \circ \alpha=\alpha$. Therefore A is an S - M-principally injective module.
(2) By (1), A^{\prime} is an S - M-principally injective module. Since $A^{\prime} \cong N / A$ and by Proposition $3.4, N / A$ is an S - M-principally injective module.

Theorem 3.6. Let A and M be right R-modules. Then A is an S-M-principally injective module if and only if A is an S-X-principally injective module for every S-M-cyclic submodule X of M.

Proof. (\Rightarrow) Suppose that A is an $S-M$-principally injective module. Let X be an S - M-cyclic submodule of M, B an S - X-cyclic submodule of X and φ an R homomorphism from B to A. By Proposition $2.8, B$ is an S - M-cyclic submodule of M. But A is an S - M-principally injective module, there exists $\bar{\varphi}: M \rightarrow N$ such that $\bar{\varphi} \circ i_{B}=\varphi$ where i_{B} is an inclusion map on B. Hence A is an S - X-principally injective module.
(\Leftarrow) Clear.
By A. Haghany and M. R. Vedadi [7], a right R-module M is called co-Hopfian (Hopfian) if every injective (surjective) endomorphism $f: M \rightarrow M$ is an automorphism. According to [9], a right R-module M is called directly finite, if it is not isomorphic to a proper direct summand of M.

Lemma 3.7. ([9, Proposition 1.25]) An R-module M is directly finite if and only if $f \circ g=I$ implies $g \circ f=I$ for any $f, g \in \operatorname{End}_{R}(M)$.

Proposition 3.8. Let M be a quasi S-principally injective directly finite module. Then M is a co-Hopfian module.

Proof. Let $f: M \rightarrow M$ be an R-monomorphism. Since M is a quasi S-principally injective module and an S - M-cyclic submodule of M, there exists $g: M \rightarrow M$ such that $g \circ f=I_{M}$ where I_{M} is an identity map on M. By Lemma 3.7, $f \circ g=I_{M}$ and thus f is an epimorphism. Therefore M is co-Hopfian.

Corollary 3.9. Let M be a quasi S-principally injective and Hopfian module. Then M is a co-Hopfian module.

4. S-pseudo- M-principally injective modules

In this section, we introduce a general form of pseudo- M-principally injectivity.
Definition 4.1. Let S be a multiplicatively closed subset of a ring R and M be a right R-module. A right R-module N is called S-pseudo- M-principally injective (for short S-pseudo- M - p-injective) if every monomorphism from S - M-cyclic submodule of M to N can be extended to an R-homomorphism from M to N. The module M is called quasi S-pseudo-principally injective (for short quasi S-pseudo- p-injective) if M is an S-pseudo- M-principally injective module. In the case of a ring R, R
is called quasi S-pseudo-principally injective if R_{R} is a quasi S-pseudo-principally injective module.

In the case $S=\{1\}, N$ is called a pseudo-M-principally injective module that one refer to [5].

Example 4.2. Let M be a right R-module. Then every S - M-principally injective module is an S-pseudo- M-principally injective module.

Proposition 4.3. Let M, A and B be right R-modules such that $A \cong B$.
(1) If A is an S-pseudo-M-principally injective module, then B is an S-pseudo-M-principally injective module.
(2) If M is an S-pseudo-A-principally injective module, then M is an S-pseudo-B-principally injective module.

Proof. Straightforward.
Proposition 4.4. Let A and M be right R-modules. Then A is an S-pseudo- M principally injective module if and only if A is an S-pseudo- X-principally injective module for every $S-M$-cyclic submodule X of M.

Proof. It is similar to the proof of Theorem 3.6.
Corollary 4.5. Let M and N be right R-modules. If N is an S-pseudo-Mprincipally injective module and A is a direct summand of M, then N is an S -pseudo-A-principally injective module.

Proof. By Proposition 4.4.
Proposition 4.6. Let M be a right R-module. Every direct summand of an S -pseudo-M-principally injective module is an S-pseudo-M-principally injective module.

Proof. Let N be an S-pseudo- M-principally injective module and A be a direct summand of N. Let B be an S - M-cyclic submodule of M and φ be a monomorphism from B to A. Since N is an S-pseudo- M-principally injective module, there exists an R-homomorphism α from M to N such that $\alpha \circ i_{B}=i_{A} \circ \varphi$ where i_{A} and i_{B} are inclusion maps on A and B, respectively. So $\pi_{A} \circ \alpha \circ i_{B}=\pi_{A} \circ i_{A} \circ \varphi=\varphi$ where π_{A} is a canonical projection of N to A. Therefore A is an S-pseudo- M-principally injective module.

Two right R-modules M_{1} and M_{2} are relatively (or mutually) S-pseudo principally injective, if M_{1} is an S-pseudo- M_{2}-principally injective module and M_{2} is an S-pseudo- M_{1}-principally injective module.

Proposition 4.7. Let M_{1} and M_{2} be right R-modules. If $M_{1} \oplus M_{2}$ is a quasi S-pseudo-principally injective module, then M_{1} and M_{2} are relatively S-pseudoprincipally injective modules.

Proof. Let A be an S - M_{2}-cyclic submodule of M_{2} and φ a monomorphism from A to M_{1}. Define $\psi: A \rightarrow M_{1} \oplus M_{2}$ by $\psi(a)=(\varphi(a), a)$ for all $a \in A$. It is clear that ψ is well-defined and an R-homomorphism. Since φ is a monomorphism, ψ is a monomorphism from A to $M_{1} \oplus M_{2}$. But $M_{1} \oplus M_{2}$ is a quasi S-pseudoprincipally injective module, there exists an R-homomorphism α from $M_{1} \oplus M_{2}$ to $M_{1} \oplus M_{2}$ such that $\alpha \circ i_{M_{2}} \circ i_{A}=\psi$ where i_{A} is an inclusion map on A and $i_{M_{2}}$ is an injection map on M_{2}. So $\pi_{M_{1}} \circ \alpha \circ i_{M_{2}} \circ i_{A}=\pi_{M_{1}} \circ \psi=\varphi$ where $\pi_{M_{1}}$ is a projection map from $M_{1} \oplus M_{2}$ to M_{1}. Hence M_{1} is an S-pseudo- M_{2}-principally injective module. Similarly, we can proved that M_{2} is an S-pseudo- M_{1}-principally injective module.

Proposition 4.8. Let M and N_{i} be right R-modules for all $i=1,2, \ldots, n$. If $\bigoplus_{i=1}^{n} N_{i}$ is an S-pseudo-M-principally injective module, then N_{i} is an S-pseudo-Mprincipally injective module for all $i=1,2, \ldots, n$.

Proof. Suppose that $\bigoplus_{i=1}^{n} N_{i}$ is an S-pseudo- M-principally injective module. Let $i \in\{1,2, \ldots, n\}, A$ be an S - M-cyclic submodule of M and φ be a monomorphism from A to N_{i}. Since $\bigoplus_{i=1}^{n} N_{i}$ is an S-pseudo- M-principally injective module and $i_{N_{i}} \circ \varphi$ is a monomorphism from A to $\bigoplus_{i=1}^{n} N_{i}$ where $i_{N_{i}}$ is the $i \underline{\underline{t h}}$ injective map from N_{i} to $\bigoplus_{i=1}^{n} N_{i}$, there exists an R-homomorphism α from M to $\bigoplus_{i=1}^{n} N_{i}$ such that $i_{N_{i}} \circ \varphi=\alpha \stackrel{i=1}{\circ} i_{A}$ where i_{A} is an inclusion map from A to M. So $\pi_{N_{i}}^{i=1} \circ \alpha \circ i_{A}=$ $\pi_{N_{i}} \circ i_{N_{i}} \circ \varphi=\varphi$ where $\pi_{N_{i}}$ is the $i \underline{\text { th }}$ projection map from $\bigoplus_{i=1}^{n} N_{i}$ to N_{i}. Therefore N_{i} is an S-pseudo-principally injective module.

Lemma 4.9. Let M be a right R-module and A be an S - M-cyclic submodule of M. If A is an S-pseudo-M-principally injective module, then A is a direct summand of M.

Proof. Suppose that A is an S-pseudo- M-principally injective module. Let i_{A} : $A \rightarrow M$ be an inclusion map and $I_{A}: A \rightarrow A$ be the identity map. By assumption, there exists an R-homomorphism $\varphi: M \rightarrow A$ such that $\varphi \circ i_{A}=I_{A}$. Thus the short exact sequence $0 \rightarrow A \rightarrow M$ splits. So $\operatorname{Im}\left(i_{A}\right)=A$ is a direct summand of M.

A right R-module M is called weakly co-Hopfian ([7]), if any injective endomorphism f of M is essential i.e., $f(M)<_{e} M$.

Theorem 4.10. Let M be a quasi S-pseudo-principally injective module.
(1) If M is a weakly co-Hopfian module, then M is a co-Hopfian module.
(2) Let X be an S-M-cyclic submodule of M. If X is an essential submodule of M and M is a weakly co-Hopfian module, then X is a weakly co-Hopfian module.

Proof. (1) Suppose that M is a weakly co-Hopfian module. Let $f: M \rightarrow M$ be an R-monomorphism. So $f(M) \cong M$ and thus there exists an isomorphism φ from $f(M)$ to M. Let A be an S - M-cyclic submodule of M and $\alpha: A \rightarrow f(M)$ be an R-monomorphism. Since M is an quasi S-pseudo-principally injective module and $\varphi \circ \alpha$ is an R-monomorphism, there exists an R-homomorphism $\psi: M \rightarrow M$ such that $\varphi \circ \alpha=\psi \circ i_{A}$ where i_{A} is an inclusion map from A to M. So $\varphi^{-1} \circ \psi \circ i_{A}=$ $\varphi^{-1} \circ \varphi \circ \alpha=\alpha$. We have that $f(M)$ is an S-pseudo- M-principally injective module. By Lemma 4.9, $f(M)$ is a direct summand of M. There exists a submodule B of M such that $M=f(M) \oplus B$ and thus $f(M) \cap B=0$. But M is a weakly co-Hopfian module, $B=0$. Then $M=f(M)+B=f(M)$. So f is an epimorphism. Therefore M is a co-Hopfian module.
(2) Suppose that X is an essential submodule of M and M is a weakly co-Hopfian module. Let $f: X \rightarrow X$ be an R-monomorphism. Since M is an quasi S-pseudoprincipally injective module and $i_{X} \circ f$ is a monomorphism where $i_{X}: X \rightarrow M$ is an inclusion map, there exists an R-homomorphism $\varphi: M \rightarrow M$ such that $i_{X} \circ f \circ i_{X}=\varphi$. So $\operatorname{Ker}(\varphi) \cap X=0$. But $X<_{e} M, \operatorname{Ker}(\varphi)=0$. By [7, Corollary 1.2], $\varphi(X)<_{e} M$. Since $f(X)=\varphi(X)$, we have $f(X)<_{e} M$. But $f(X) \subseteq X \subseteq M$, so $f(X)<_{e} X$. Therefore X is a weakly co-Hopfian module.

Recall that a right R-module M is said to be multiplication if each submodule N of M has the form $N=M I$ for some ideal I of $R([2])$.

Proposition 4.11. Let M be a multiplication quasi S-pseudo-principally injective module. Then every S-M-cyclic submodule of M is quasi S-pseudo-principally injective.

Proof. Let N be an S - M-cyclic submodule of M, L be an S - N-cyclic submodule of N and φ be a monomorphism from L to N. So L is an S - M-cyclic submodule of M. But M is a quasi S-pseudo-principally injective module, there exists an R-homomorphism α from M to M such that $\alpha \circ i_{L}=\varphi$ where i_{L} is an inclusion
map on L. Since M is a multiplication module, there exists an ideal I of R with $N=M I$. Then $\alpha(N)=\alpha(M I)=\alpha(M) I \subseteq M I=N$ and thus $\left.\alpha\right|_{N}: N \rightarrow N$. So $\left.\alpha\right|_{N} \circ i_{L}=\varphi$. Therefore N is a quasi S-pseudo-principally injective module.

Theorem 4.12. Let M be a uniform module. Then every quasi S-pseudo-principally injective module is a quasi S-principally injective module.

Proof. Suppose that M is a quasi S-pseudo-principally injective module. Let A be an S - M-cyclic submodule of M and φ an R-homomorphism from A to M.

Case 1. $\operatorname{ker}(\varphi)=0$. We see that φ is a monomorphism. But M is a quasi S-pseudo-principally injective module, there exists $\bar{\varphi}: M \rightarrow M$ such that $\left.\bar{\varphi}\right|_{A}=\varphi$.

Case 2. $\operatorname{ker}(\varphi) \neq 0$. Since M is a uniform module, $\operatorname{ker}(\varphi)$ is an essential submodule of M. But $\operatorname{ker}(\varphi) \cap \operatorname{ker}\left(\varphi+i_{A}\right)=0$ where i_{A} is the inclusion map from A to M, we have $\operatorname{ker}\left(\varphi+i_{A}\right)=0$ and thus $\varphi+i_{A}$ is a monomorphism. Since M is a quasi S-pseudo-principally injective module, there exists an R-homomorphism $\alpha: M \rightarrow M$ such that $\alpha(a)=\left(\varphi+i_{A}\right)(a)$ for all $a \in A$. Choose $\bar{\varphi}=\alpha-i_{M}$ where I_{M} is an identity map on M. Then $\bar{\varphi}(a)=\left(\alpha-i_{M}\right)(a)=\alpha(a)-i_{M}(a)=$ $\varphi(a)+i_{A}(a)-I_{M}(a)=\varphi(a)$ for all $a \in A$. We have $\bar{\varphi}_{A}=\varphi$.

From Case 1 and Case 2, we have that M is a quasi S-principally injective module.

Proposition 4.13. Let M be a right R-module and A be a submodule of M. If M is a quasi S-pseudo-principally injective module, A is an essential and $S-M$ cyclic submodule of M, then every monomorphism $\varphi: A \rightarrow M$ can be extended to monomorphism in $E n d_{R}(M)$.

Proof. Since M is a quasi S-pseudo-principally injective module, there exists $\bar{\varphi}$: $M \rightarrow M$ such that $\left.\bar{\varphi}\right|_{A}=\varphi$. Since $A \cap \operatorname{ker}(\bar{\varphi})=0$ and A is an essential submodule of $M, \operatorname{ker}(\bar{\varphi})=0$. Thus $\bar{\varphi}$ is a monomorphism in $\operatorname{End}_{R}(M)$.

Acknowledgement. The author is very grateful to the referees for many valuable comments and suggestions which helped to improve the paper.

Disclosure statement: The author report that there are no competing interests to declare.

References

[1] D. D. Anderson, T. Arabaci, U. Tekir and S. Koc, On S-multiplication modules, Comm. Algebra, 48(8) (2020), 3398-3407.
[2] A. Barnard, Multiplication modules, J. Algebra, 71(1) (1981), 174-178.
[3] S. Baupradist and S. Asawasamrit, On fully-M-cyclic modules, J. Math. Res., 3(2) (2011), 23-26.
[4] S. Baupradist and S. Asawasamrit, GW-principally injective modules and pseudo-GW-principally injective modules, Southeast Asian Bull. Math., 42 (2018), 521-529.
[5] S. Baupradist, H. D. Hai and N. V. Sanh, On pseudo-p-injectivity, Southeast Asian Bull. Math., 35(1) (2011), 21-27.
[6] S. Baupradist, H. D. Hai and N. V. Sanh, A general form of pseudo-pinjectivity, Southeast Asian Bull. Math., 35 (2011), 927-933.
[7] A. Haghany and M. R. Vedadi, Modules whose injective endomorphisms are essential, J. Algebra, 243(2) (2001), 765-779.
[8] V. Kumar, A. J. Gupta, B. M. Pandeya and M. K. Patel, M-sp-injective modules, Asian-Eur. J. Math., 5(1) (2012), 1250005 (11 pp).
[9] S. H. Mohamed and B. J. Muller, Continuous and Discrete Modules, London Math. Soc. Lecture Note Series, 147, Cambridge Univ. Press, Cambridge, 1990.
[10] W. K. Nicholson and M. F. Yousif, Principally injective rings, J. Algebra, 174 (1995), 77-93.
[11] M. K. Patel and S. Chase, FI-semi-injective modules, Palest. J. Math., 11(1) (2022), 182-190.
[12] M. K. Patel, B. M. Pandeya, A. J. Gupta and V. Kumar, Quasi principally injective modules, Int. J. Algebra, 4 (2010), 1255-1259.
[13] T. C. Quynh and N. V. Sanh, On quasi pseudo-GP-injective rings and modules, Bull. Malays. Math. Sci. Soc., 37(2) (2014), 321-332.
[14] N. V. Sanh and K. P. Shum, Endomorphism rings of quasi principally injective modules, Comm. Algebra, 29(4) (2001), 1437-1443.
[15] N. V. Sanh, K. P. Shum, S. Dhompongsa and S. Wongwai, On quasi-principally injective modules, Algebra Colloq., 6(3) (1999), 269-276.
[16] W. M. Xue, On Morita duality, Bull. Austral. Math. Soc., 49(1) (1994), 35-45.
[17] Z. Zhu, Pseudo QP-injective modules and generalized pseudo QP-injective modules, Int. Electron. J. Algebra, 14 (2013), 32-43.

Samruam Baupradist

Department of Mathematics and Computer Science
Faculty of Science
Chulalongkorn University
Bangkok 10330, Thailand
e-mail: samruam.b@chula.ac.th

